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概要
本研究は, 「画像工学」と「材料科学」に共通する数学的構造に着目し, 両者を包含する抽象的
枠組みの構築を目的とする. 具体的には, 方位調整を考慮した白黒画像処理モデル [4]と結晶粒界
運動モデル [5] を対象に, エネルギー最小化の観点から汎関数を導入する. この汎関数は既存の
自由エネルギーの特性を含み, 解析的安定性を確保する平滑化項を加えた構成となっている. 本
発表では, この汎関数に基づく偏微分方程式系について得られた成果を報告する. 尚, 本稿は水
野大樹さん (千葉大学大学院融合理工学府), 白川健先生 (千葉大学教育学部), Harbir Antil先生
(George Mason 大学)との共同研究に基づく. また, 本研究は, JST次世代研究者挑戦的研究プ
ログラム JPMJSP2109の支援を受けたものである.

1 導入
本小論を通して, Ω ⊂ RN (N ∈ N) は有界な領域とし, その境界 Γ := ∂Ω は N ≥ 2 のとき

Lipschitz 連続であるとする. nΓ : Γ −→ SN−1 は Γ の外向き単位法線ベクトルであるとする.

0 < T < ∞は時間の定数とし, Q := (0, T )× Ω, Σ := (0, T )× Γと定める.

本小論では, 任意の ν ≥ 0に対し以下の擬放物型システム (S)ν を考える:

A(u)∂tu− div
(
α(u)B∗(u)∂γ(B(u)∇u) + ν∇Υp(∇u) + µ∇∂tu

)
+∇uG(x,u) + [∇α](u)γ(B(u)∇u) + α(u)∂γ(B(u)∇u) : [∇B](u)∇u 3 0 in Q,(

α(u)B∗(u)∂γ(B(u)∇u) + ν∇Υp(∇u) + µ∇∂tu
)
nΓ 3 0 on Σ,

u(0, x) = u0(x), x ∈ Ω.

このシステムの未知変数 u =⊤[u1, . . . , uM ] : Q −→ RM (M ∈ N) は, M 次元ベクトルを値に持つ関
数である. ここに, µ > 0, p ∈ (2,∞) ∩ [N,∞)は固定された正の定数である. α : RM −→ [0,∞),

G : Ω × RM −→ [0,∞), Υp : RM×N −→ [0,∞), A : RM−→RM×M は与えられた関数である.

∇uGは Gの RM 上の勾配を表す. γ : RM×N −→ [0,∞)は凸関数であり, ∂γ ⊂ RM×M × RM×N

は凸関数 γ の劣微分を表す. B : RM−→L(RM×N ;RM×N ) は, RM 上の有界線形作用素, B∗ :

RM −→ L(RM×N ;RM×N ) は B の共役作用素, ∇B : RM−→L(RM ;L(RM×N ;RM×N )) は B の
Fréchet微分 (全微分)を表す.

システム (S)ν は以下で定められる [H]M := [L2(Ω)]M 上の汎関数 Eν = Eν(u)の擬放物型勾配流
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として導出される:

u ∈ [H]M 7→ Eν(u) :=



∫
Ω

α(u)γ(B(u)∇u) dx+

∫
Ω

G(x,u) dx

+ν

∫
Ω

Υp(∇u) dx, if u ∈ [W 1,p(Ω)]M ,

+∞, otherwise.

汎関数 Eν = Eν(u)は, [4, 5]によって提案された自由エネルギーを一般化したものである. [4]で
は方位の自動調整機能を備えた白黒画像処理モデルに対し, [5]では結晶粒界運動の数学モデルに対し
て, それぞれ自由エネルギーが提案されている. 特に, 作用素 B は [4]における回転行列による方位
調整機能を一般化したものであり, 非等方性を表す計量 γ との合成関数としてエネルギーに組み込ま
れている. また, 作用素 Aおよび実数値関数 αは [5]における結晶粒界の形成に関わる駆動力に対応
しており, いずれも未知変数 uに依存する形で構成されている. 各モデルに対する解析は [1, 2, 6, 9]

において行われており, 擬放物型勾配流の適切性について議論されている.

本研究の目的は, 白黒画像処理問題および結晶粒界運動を記述する擬放物型モデルの双方を包含す
る, 抽象的な数学理論の枠組みを構築することである. 実際, 汎関数 Eν は [1, 2, 6, 9]において扱わ
れたエネルギーの特性を包含しつつ, ∇Υp による平滑化を加えた設定となっている. 本小論では, こ
のような平滑化付きの一般型エネルギーに基づく連続系システム (S)ν を考察する.

2 主結果
本小論では, 以下の関数空間を用いる:

H := L2(Ω), V := H1(Ω), Wν := {z ∈ V | νz ∈ W 1,p(Ω)},
H := L2(0, T ;H), V := L2(0, T ;V ).

以上の記法を導入した上で, 本講演における主結果を以下の仮定の下で議論する.

(A0) µ > 0, p ∈ (2,∞) ∩ [N,∞)は固定された定数である.

(A1) α : RM −→ [0,∞)は与えられた関数で α ∈ W 2,∞(RM ) ∩ C2(RM )である.

(A2) G : Ω× RM → [0,∞) で以下の条件をすべて満たす:

G(·,u) ∈ L1(Ω), ∀u ∈ RM , G(x, ·) ∈ C1,1(RM ), a.e. x ∈ Ω, and

|∇uG(x,u)|, |∇2
uG(x,u)| ∈ L∞(Ω× RM ).

(A3) B : RM −→ L(RM×N ;RM×N )は次で定義される作用素である:

B : u ∈ RM 7→ B(u)W := WB0(u) ∈ RM×N .

ただし, B0 : RM −→ RN×N は以下を満たす, 行列値関数である:

B0 ∈ [W 2,∞(RM ) ∩ C2(RM )]N×N .

また, [∇B] : RM −→ L(RM ;L(RM×N ;RM×N ))は B の Fréchet微分を表す. すなわち,

[∇B] : u ∈ RM 7→ [∇B](u)W := W [∇B0](u) ∈ (RM×N )M .



さらに, B∗ : RM −→ L(RM×N ;RM×N )は B の共役として, 以下で定義される作用素である:

B∗ : u ∈ RM 7→ B∗(u)W := W ⊤B0(u) ∈ RM×N .

(A4) A : RM −→ RM×M は与えられた行列値関数で, A ∈ [W 1,∞(RM )]M×M である. さらに, 任
意の u ∈ RM に対して A(u)は対称行列で, ある正定数 CA > 0が存在して,

⊤vA(u)v ≥ CA|v|2, ∀u, ∀v ∈ RM .

(A5) Υp : RM×N −→ [0,∞)は C1-級の与えられた凸関数で, 以下をすべて満たす正定数 CΥ > 0

が存在する:

1

CΥ
(|W |p − 1) ≤ Υp(W ) ≤ CΥ(|W |p + 1), ∀W ∈ RM×N , and

(∇Υp(W1)−∇Υp(W2)) : (W1 −W2) ≥ CΥ|W1 −W2|p, ∀W1,

(A6) γ : RM×N −→ [0,∞)は以下の条件を満たす凸関数である:

∃Cγ > 0 s.t. γ(W ) ≤ Cγ(|W |+ 1), ∀W ∈ RM×N , and ∇γ ∈ L∞(RM×N ;RM×N ).

(A7) u0 は与えられた初期データで, 以下を満たす:

u0 ∈ [Wν ]
M , if ν ∈ (0, 1), and u0 ∈ [V ]M , if ν = 0.

次に, システム (S)の解の定義を述べる.

定義 1. 以下の条件を満たす関数 uν をシステム (S)ν の解と呼ぶ.

(S0) uν ∈ W 1,2(0, T ; [V ]M ) ∩ L∞(0, T ; [Wν ]
M ).

(S1) あるベクトル値関数 w∗ ∈ [H ]M×N が存在して, 以下を満たす:

w∗ ∈ ∂γ(B(uν)∇uν) in RM×N , a.e. in Q,

さらに, uν は以下の変分不等式を満たす:

(A(uν(t))∂tuν(t),uν(t)−φ)[H]M + µ(∇∂tuν(t),∇(uν(t)−φ))[H]M×N

+ν

∫
Ω

∇Υp(∇uν(t)) : ∇(uν(t)−φ) dx+ (∇uG(x,uν(t)),uν(t)−φ)[H]M

+(α(uν(t))w
∗(t) : [∇B](uν(t))∇uν(t),uν(t)−φ)[H]M

+([∇α](uν(t))γ(B(uν(t))∇uν(t)),uν(t)−φ)[H]M

+

∫
Ω

α(uν(t))γ(B(uν(t))∇uν(t)) dx ≤
∫
Ω

α(uν(t))γ(B(uν(t))∇φ) dx,

a.e. t ∈ (0, T ), ∀φ ∈ [Wν ]
M .

(S3) uν(0) = u0 in [H]M .

上記に基づき, 本講演では以下 2つの主定理を, 現時点における成果として報告する.



主定理 1. 仮定 (A0)–(A7)の下で, システム (S)ν には解 uν が存在する. さらに, この解 uν は以下
のエネルギー不等式を満たす:

CA

4

∫ t

s

|∂tuν(σ)|2[H]M dσ +
µ

2

∫ t

s

|∇∂tuν(σ)|2[H]M×N dσ + Eν(uν(t)) ≤ Eν(uν(s)), (1)

for a.e. s ∈ [0, T ], ∀t ∈ [s, T ].

主定理 2. 仮定 (A0)–(A7)の下で, 初期データとして u0,k ∈ [W 1,p
0 (Ω)]M (k = 1, 2)を与える. これ

に対応するシステム (S)ν の解を uk ∈ [H ]M (k = 1, 2)とする. ただし, u0 = u0,k(k = 1, 2)とす
る. また, ν > 0, N ≤ 6, A ∈ C1(RM ;RM×M ), γ ∈ C1,1(RM×N ) ∩ C2(RM×N ) であると仮定す
る. さらに, 時刻 tに依存する関数 J(t)を以下のように定義する:

J(t) := |
√
A(u2(t))(u1 − u2)(t)|2[H]M + µ|∇(u1 − u2)(t)|2[H]M×N , ∀t ∈ [0, T ].

このとき, ある正の定数 C∗ > 0が存在して, 以下の不等式が成立する:

J(t) ≤ exp(C∗(1 + T )((1 + |u1|L∞(0,T ;[W 1,p(Ω)]M ))
2 + |∂tu1|[V ]M + |∂tu2|[V ]M ))J(0),

∀t ∈ [0, T ].

このとき, システム (S)ν の解は一意である. さらに, エネルギー不等式 (1) は任意の時刻 0 ≤ s ≤
t ≤ T に対して成立する.

3 証明の概要
システム (S)ν の解の存在とエネルギー不等式に関する証明は, 以下の時間離散化スキームに

よる近似問題に基づく. m ∈ N を時間区間 (0, T ) の分割数とし, τ := T
m を時間幅を表す定数,

ν ∈ (0, 1), ε ∈ (0, 1)は近似の定数とする.

(AP)τν,ε: 以下を満たす関数列 {ui
ν,ε}mi=1 ⊂ [Wν ]

M を求める問題:

1

τ
(A(ui−1

ν,ε )(ui
ν,ε − ui−1

ν,ε ),φ)[H]M +
µ

τ
(∇(ui

ν,ε − ui−1
ν,ε ),∇φ)[H]M×N

+ (α(ui
ν,ε)B

∗(ui
ν,ε)∇γε(B(ui

ν,ε)∇ui
ν,ε),∇φ)[H]M×N + (∇uG(x,ui

ν,ε),φ)[H]M

+ ν

∫
Ω

∇Υp(∇ui
ν,ε) : ∇φ dx+ ([∇α](ui−1

ν,ε )γε(B(ui−1
ν,ε )∇ui−1

ν,ε ),φ)[H]M

+ (α(ui−1
ν,ε )∇γε(B(ui−1

ν,ε )∇ui−1
ν,ε ) : [∇B](ui−1

ν,ε )∇ui−1
ν,ε ,φ)[H]M = 0, ∀φ ∈ [Wν ]

M .

ただし, 任意の ε ∈ (0, 1)に対し, γε は軟化子 (mollifier) ρε ∈ C∞
c (RM×N )を用いて γε := ρε ∗ γ と

して定められる C∞ 級の凸関数である.

近似問題 (AP)τν,ε については, 以下の定理を示すことができる.

定理 1. 任意の ν ∈ (0, 1), ε ∈ (0, 1) に対して, ある正定数 τ∗(ν, ε) := τ∗(ν, |∇γε|W 1,∞(RM×N )) ∈
(0, 1) が存在し, 任意の τ ∈ (0, τ∗(ν, ε)) に対して (AP)

τ
ν,ε は一意な解 {ui

ν,ε}mi=1 ⊂ [Wν ]
M を持つ.

さらに, この解 {ui
ν,ε}mi=1 は以下のエネルギー不等式を任意の i = 1, . . . ,mで満たす.

CA

4τ
|ui

ν,ε − ui−1
ν,ε |2[H]M +

µ

2τ
|∇(ui

ν,ε − ui−1
ν,ε )|2[H]M×N + Eν,ε(u

i
ν,ε) ≤ Eν,ε(u

i−1
ν,ε ). (2)



ここに, Eν,ε は以下で与えられる近似エネルギーである.

u ∈ [Wν ]
M 7→ Eν,ε(u) :=

∫
Ω

α(u)γε(B(u)∇u) dx+

∫
Ω

G(x,u) dx+ ν

∫
Ω

Υp(∇u) dx.

定理 1 の証明のために, いくつか補題を準備する.

補題 3.1. 任意の w0 ∈ [V ]M に対して, ある列 {wν}ν∈(0,1) ⊂ [Wν ]
M が存在し,

wν → w0 in [V ]M , Eν(wν) → E(w0) as ν ↓ 0.

次に, 任意の u† ∈ [Wν ]
M , u ∈ [Wν ]

M に対して, 以下の楕円型問題 (E1)u を考える:

A(u†)

τ
(u− u†)− div

(
α(u)B∗(u)∇γ(B(u)∇u) + ν∇Υp(∇u)

+
µ

τ
∇(u− u†)

)
+∇uG(x,u) + [∇α](u†)γ(B(u†)∇u†)

+ α(u†)∇γ(B(u†)∇u†) : [∇B](u†)∇u† = 0 in [H]M .

補題 3.2. 任意の τ ∈ (0, 1)に対して, (E1)u は次の意味において一意解 u ∈ [Wν ]を持つ:

1

τ
(A(u†)(u− u†),ψ)[H]M +

µ

τ
(∇(u− u†),∇ψ)[H]M×N

+ (α(u)B∗(u)∇γ(B(u)∇u),∇ψ)[H]M×N + (∇uG(x,u),ψ)[H]M

+ ν

∫
Ω

∇Υp(∇u) : ∇ψ dx+ ([∇α](u†)γ(B(u†)∇u†),ψ)[H]M

+ (α(u†)∇γ(B(u†)∇u†) : [∇B](u†)∇u†,ψ)[H]M = 0, ∀ψ ∈ [Wν ]
M .

さらに, 十分小さな定数 τ1 ∈ (0, 1)と, u ∈ [Wν ]
M に依存しない正定数 C0 > 0が存在し, この一

意解 uは次の評価式を満たす:

|∇u|p
[Lp(Ω)]M×N ≤ C0

ν

(
1 + |∇u†|p

[Lp(Ω)]M×N

)
.

次に, 以下の楕円型問題 (E2)を考える:

A(u†)

τ
(u− u†)− div

(
α(u)B∗(u)∇γ(B(u)∇u) + ν∇Υp(∇u)

+
µ

τ
∇(u− u†)

)
+∇uG(x,u) + [∇α](u†)γ(B(u†)∇u†)

+ α(u†)∇γ(B(u†)∇u†) : [∇B](u†)∇u† = 0 in [H]M .

補題 3.3. 補題 3.2 における τ1 ∈ (0, 1)を用いる. すると, ある定数 τ2 ∈ (0, τ1)が存在し, (E2)は
以下の意味において一意解 u ∈ [Wν ]

M を持つ:

1

τ
(A(u†)(u− u†),ψ)[H]M +

µ

τ
(∇(u− u†),∇ψ)[H]M×N

+ (α(u)B∗(u)∇γ(B(u)∇u),∇ψ)[H]M×N + (∇uG(x,u),ψ)[H]M

+ ν

∫
Ω

∇Υp(∇u) : ∇ψ dx+ ([∇α](u†)γ(B(u†)∇u†),ψ)[H]M

+ (α(u†)∇γ(B(u†)∇u†) : [∇B](u†)∇u†,ψ)[H]M = 0, ∀ψ ∈ [Wν ]
M .



定理 1 の証明については, 補題 3.1, 補題 3.2 および補題 3.3を用いることで, 時間離散近似スキーム
(AP)τν,ε の可解性および時間離散近似スキームに対するエネルギー不等式 (2)を, 数学的帰納法を用
いることで示すことができる.

3.1 主定理 1 の証明の概要
ここからは, 連続系システム (S)ν への極限移行について考える. (Case 1) ν ↓ 0の場合と (Case 2)

ν > 0 を固定する場合の 2 つに分けて議論を行う. また, 連続系システム (S)ν への極限以降の際に
は, 以下の 3種類の補間関数を導入する.

記法 1. τ > 0を時間刻み幅の定数とし, {ti}∞i=0 を次で定義される時系列とする:

ti := iτ, ∀i = 0, 1, 2, . . .

X を Banach空間とする. 任意の列 {[ti, ui]}∞i=0 ⊂ [0,∞) ×X に対して, 次の 3種類の補間を定
義する: [u]τ ∈ L∞

loc([0,∞);X), [u]τ ∈ L∞
loc([0,∞);X), および [u]τ ∈ W 1,2

loc ([0,∞);X). その定義は
以下の通りである:

[u]τ (t) := χ(−∞,0]u0 +

∞∑
i=1

χ(ti−1,ti](t)ui,

[u]τ (t) :=

∞∑
i=0

χ(ti,ti+1](t)ui, in X, ∀t ≥ 0,

[u]τ (t) :=

∞∑
i=1

χ(ti−1,ti](t)

(
t− ti−1

τ
ui +

ti − t

τ
ui−1

)
,

ここで, χE : R → {0, 1}は集合 E ⊂ Rの特性関数を表す.

(Case 1) ν ↓ 0とする場合
この場合の証明においては, 以下の補題が必要となる.

補題 3.4. 任意の ψ ∈ [V ]M , {νk}k∈N ⊂ (0, 1); νk ↓ 0に対して, ある点列 {ψk}k∈N ⊂ [C∞(Q)]M

が存在して, 以下の性質を満たす.

ψk → ψ in [V ]M as k → ∞,

ν
1
p

k ∇ψk → 0 in Lp(0, T ; [Lp(Ω)]M×N ) as k → ∞.

ν ≥ 0のとき, 先の定理 1の結果から以下の有界性が得られる:

(B-1) {[uν,ε]τ | τ ∈ (0, τ∗(ν, ε)), ν ∈ (0, ν0), ε ∈ (0, 1)} は, L∞(0, T ; [V ]M ) および
W 1,2(0, T ; [V ]M )において有界である,

(B-2) {[uν,ε]τ | τ ∈ (0, τ∗(ν, ε)), ν ∈ (0, ν0), ε ∈ (0, 1)} は, {[uν,ε]τ | τ ∈ (0, τ∗(ν, ε)), ν ∈
(0, ν0), ε ∈ (0, 1)}は. L∞(0, T ; [V ]M )において有界である,



(B-3) {∇γε(B([uν,ε]τ (t))∇[uν,ε]τ (t)) | τ ∈ (0, τ∗(ν, ε)), ν ∈ (0, ν0), ε ∈ (0, 1)} は,

L∞(Q;RM×N )において有界である,

(B-4) t ∈ [0, T ] 7→ Eν,ε([uν,ε]τ (t)) ∈ [0,∞), t ∈ [0, T ] 7→ Eν,ε([uν,ε]τ (t)) ∈ [0,∞) は, 任意の
ν ∈ (0, ν0), 0 < ε < 1, 0 < τ < τ∗(ν, ε) に対して非増加である. さらに, {Eν,ε(u

0
ν) | ν ∈

(0, ν0), ε ∈ (0, 1)}は有界である. よって, {Eν,ε([uν,ε]τ ) | τ ∈ (0, τ∗(ν, ε)), ν ∈ (0, ν0), ε ∈
(0, 1)}, {Eν,ε([uν,ε]τ ) | τ ∈ (0, τ∗(ν, ε)), ν ∈ (0, ν0), ε ∈ (0, 1)}は, BV (0, T )において有界
である,

(B-5) {νΥp(∇[uν,ε]τ ) | τ ∈ (0, τ∗(ν, ε)), ν ∈ (0, ν0), ε ∈ (0, 1)}, {νΥp(∇[uν,ε]τ ) | τ ∈
(0, τ∗(ν, ε)), ν ∈ (0, ν0), ε ∈ (0, 1)}は, L∞(0, T ;L1(Ω))において有界である.

(B-1)–(B-3)に基づき, Aubin型のコンパクト性理論 [8, Corollary 4]が適用でき, {νn}n∈N ⊂ (0, ν0),

{εn}n∈N ⊂ (0, 1), {τn}n∈N ⊂ (0, 1)の列と, u ∈ [H ]M , w∗ ∈ L∞(Q;RM×N )が存在し,

νn ↓ 0, εn ↓ 0, τn :=
1

2

(
τ∗(νn, εn) ∧ νn ∧ εn ∧ 1

)
↓ 0,

un := [uνn,εn ]τn → u in C([0, T ]; [H]M ), weakly in W 1,2(0, T ; [V ]M ),

weakly- ∗ in L∞(0, T ; [V ]M ),

un := [uνn,εn ]τn → u, un := [uνn,εn ]τn → u in L∞(0, T ; [H]M ),

weakly- ∗ in L∞(0, T ; [V ]M ),

∇γεn(B([uνn,εn
]τn(t))∇[uνn,εn

]τn) → w∗ weakly- ∗ in L∞(Q;RM×N ), as n → ∞,

特に, 補題 3.1 より,

u(0) = lim
n→∞

un(0) = lim
n→∞

u0
νn

= u0 in [H]M .

さらに, Hellyの選出定理 [7, Chapter 7, p.167]を適用すると, 有界かつ非増加な関数 J∗ : [0, T ] 7→
[0,∞)が存在し, 次が成り立つ:

Eνn,εn(un) → J∗ and Eνn,εn(un) → J∗

weakly- ∗ in BV (0, T ), and weakly- ∗ in L∞(0, T ),

Eνn,εn(un(t)) → J∗(t) and Eνn,εn(un(t)) → J∗(t), for any t ∈ [0, T ].

以上の点列を用いて, 連続系システム (S)0 の解の存在を示すことができる. また, エネルギー不等式
(1)も成立することが分かる. 詳細な証明については, [3]を参照されたい.

(Case 2) ν > 0を固定する場合
ν > 0のとき, 先の定理 1の結果から以下の有界性が得られる:

(C-1) {[uν,ε]τ | τ ∈ (0, τ∗(ν, ε)), ε ∈ (0, 1)}, L∞(0, T ; [V ]M ) およびW 1,2(0, T ; [V ]M ) において
有界である,

(C-2) {[uν,ε]τ | τ ∈ (0, τ∗(ν, ε)), ε ∈ (0, 1)}, {[uν,ε]τ | τ ∈ (0, τ∗(ν, ε)), ε ∈ (0, 1)} は,

L∞(0, T ; [W 1,p(Ω)]M )において有界である,



(C-3) {∇γε(B([uν,ε]τ (t))∇[uν,ε]τ (t)) | τ ∈ (0, τ∗(ν, ε)), ε ∈ (0, 1)}は, L∞(Q;RM×N )において
有界である,

(C-4) t ∈ [0, T ] 7→ Eν,ε([uν,ε]τ (t)) ∈ [0,∞) は, t ∈ [0, T ] 7→ Eν,ε([uν,ε]τ (t)) ∈ [0,∞) は, 任意
の 0 < ε < 1, 0 < τ < τ∗(ν, ε) に対して非増加である. さらに, {Eν,ε(u

0
ν,ε) | ε ∈ (0, 1)}

は有界である. よって, {Eν,ε([uν,ε]τ ) | τ ∈ (0, τ∗(ν, ε)), ε ∈ (0, 1)}, {Eν,ε([uν,ε]τ ) | τ ∈
(0, τ∗(ν, ε)), ε ∈ (0, 1)}は, BV (0, T )において有界である.

(C-1)–(C-3)に基づき, Aubin型のコンパクト性理論 [8, Corollary 4]が適用でき, {εn}n∈N ⊂ (0, 1),

{τn}n∈N ⊂ (0, 1)の列と, uν ∈ [H ]M , w∗ ∈ L∞(Q;RM×N )が存在し,

εn ↓ 0, τn :=
1

2

(
τ∗(ν, εn) ∧ εn ∧ 1

)
↓ 0,

un := [uν,εn ]τn → uν in C([0, T ]; [H]M ), weakly in W 1,2(0, T ; [V ]M ),

weakly- ∗ in L∞(0, T ; [W 1,p(Ω)]M ),

un := [uν,εn ]τn → uν , un := [uν,εn
]τn → uν in L∞(0, T ; [H]M ),

weakly- ∗ in L∞(0, T ; [W 1,p(Ω)]M ),

∇γεn(B([uν,εn
]τn(t))∇[uν,εn

]τn) → w∗ weakly- ∗ in L∞(Q;RM×N ), as n → ∞.

特に, p > N のとき Sobolevの埋め込みW 1,p(Ω) ⊂ C(Ω)はコンパクトであるため, 点列 un は uν

に C(Q)において収束する．
さらに, Hellyの選出定理 [7, Chapter 7, p.167]を適用すると, 有界かつ非増加な関数 J∗ : [0, T ] 7→

[0,∞)が存在し, 次が成り立つ:

Eνn,εn(un) → J∗ and Eνn,εn(un) → J∗

weakly- ∗ in BV (0, T ), and weakly- ∗ in L∞(0, T ),

Eνn,εn(un(t)) → J∗(t) and Eνn,εn(un(t)) → J∗(t), for any t ∈ [0, T ].

以上の点列を用いて, 連続系システム (S)0 の解の存在を示すことができる. また, エネルギー不等式
(1)も成立することが分かる. 証明の流れとしては, (Case 1)と同様である. 詳細な証明については,

[3]を参照されたい.

3.2 主定理 2 の証明の概要
ν > 0 を正の定数として固定する．また, N ≤ 6, A ∈ C1(RM ;RM×M ), γ ∈ C1,1(RM×N ) ∩

C2(RM×N )を追加で仮定する．k = 1, 2 に対して, uk ∈ W 1,2(0, T ; [V ]M ) ∩ L∞(0, T ; [Wν ]
M )を,

初期条件 u1(0) = u2(0) = u0 ∈ [Wν ]
M を満たす系 (S)ν の解とする.

このとき, u1 に対する変分不等式に φ = u2 を，u2 に対する変分不等式に φ = u1 をそれぞれ代
入する. そして, 2つの不等式を足し合わせ, 評価を行うことで, システム (S)ν の解の一意性を示すこ
とができる. 具体的には, 以下の Gronwall型の不等式を導出することにより, 示すことができる.

d

dt
J(t) ≤ C∗((1 + |u1|L∞(0,T ;[W 1,p(Ω)]M ))

2 + |∂tu1|[V ]M + |∂tu2|[V ]M )J(t), ∀t ∈ [0, T ]. (3)



ただし, ここで定義される関数 J : [0, T ] → [0,∞)は次のように定義される:

J(t) := |
√
A(u2(t))(u1 − u2)(t)|2[H]M + µ|∇(u1 − u2)(t)|2[H]M×N , ∀t ∈ [0, T ].

この不等式 (3) の導出において, 追加した仮定および, Sobolev の埋め込み定理 H1(Ω) ⊂ L
2p

p−1 (Ω)

(N = 1, 2), H1(Ω) ⊂ L
2p

p−2 (Ω) (N = 1, 2), H1(Ω) ⊂ L
2N

N−2 (Ω) (p ≥ N ≥ 3), および H1(Ω) ⊂
L3(Ω) (N ≤ 6)を用いることで, 各評価を行うことができる.
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